Summer school 2023	12-15 June	Ver 0.2
Environmental point clouds classification	Rennes, France	1/4

Day 1 13 June	08h30-09h00	Welcome, coffee
	09h00-09h30	General introduction, tour de table
	09h30-10h30	Presentation of 10 participants
	Machine learni	ing approach: classification with CloudCompare (3DMASC)
	M. Letard, P. Le	eroy
	10h30-12h00	Basics of machine learning
		Presentation of 3DMASC: a simple approach to machine learning with
		random forest
		Properties of good training / test datasets
		Lunch
	13h30-14h30	Presentation of 10 participants
	14h30-16h00	Compute / visualize features with CloudCompare
		Show limitations of available features
		Build parameters files for 3DMASC
		Compute features with 3DMASC (train)
		Explain how to read a confusion matrix
		Pause
	16h15-17h30	Introduce random forest: prediction confidence, feature importance
		Explain feature selection using the GIII
	17h30-18h00	Presentation of 5 participants [3]
		Diner 19h00 (Loco Loca, Rennes)

Summer school 2023	12-15 June	Ver 0.2
Environmental point clouds classification	Rennes, France	2/4

Day 2	08h30-10h30	Manual data labelling using CloudCompare	
12 June	M. Letard	Process various datasets (personal data or other files proposed by the	
	P. Leroy	team)	
		Pause	
	Machine learni	ing approach: point-cloud classification with Python	
	10h30-12h00	How to compute 3DMASC features out of the GUI and use them in	
	M. Letard	Python	
	P. Leroy	OpenCV: introduce possibility to train with Python and classify with	
		CloudCompare	
		Scikit-learn: application of random forest and other algorithms to the	
		labelled data with 3DMASC features	
		Compare metrics obtained	
		Lunch	
	13h30-15h30	Introduce advanced feature selection with Python	
		SHAP (Shapley Additive exPlanations)	
		Pause	
	Classical methods (geometrical, rule-based approaches)		
	15h30-17h30	LiDAR based metrics (intensity, return number, number of returns,	
	B. Bookhagen	naïve classification, rule-based)	
		Introduction to commonly used software for ground classification	
		PDAL (Point Data Abstraction Library)	
		• LAStools	
		CloudCompare CSF plugin (cloth simulation)	
		Application (command line, Python) to an ALS dataset of Berlin	
		Diner 10h00 (La Motto Dicauat Bannas)	
		ו טוויבי באוטט ובע ואטנוב אנגעעבו. הכיווופגו	

Summer school 2023	12-15 June	Ver 0.2
Environmental point clouds classification	Rennes, France	3/4

Day 3	08h30-10h15	Applications on labelled datasets: ALS, TLS, SfM
14	B. Bookhagen	 ALS University campus Rennes
June	A.Rheinwalt	 ALS + SfM mountains
		 TLS dataset (salt marshes + river gorge)
		Show limitations of classical tools on stoop onvironments or dense
		show initiations of classical tools of steep environments of dense
		vegetation, or shiri data with vegetation
	<u>.</u>	•
	Neural networks	approach
	10h30 – 12h00	Low level introduction to deep learning concepts
	T. Corpetti	
		Lunch
	13h30-14h30	Aljoscha Rheinwalt [University of Potsdam]
	Invited	Philippe Steer [University of Rennes]
		Pebbles segmentation
		Pause
	14h45-17h30	Classification with a neural network (Multi-Layer Perceptron) and
	A. Rheinwalt	Random Forest
	B. Bookhagen	 Large training dataset in a mixed urban-vegetation
	2. 200	environment and classes ground building vegetation cars
		Using putton tonsorflow and ssibit loarn
		• Using python-tensornow and scikit-learn
		 Neural network and Random Forest parameters

Summer school 2023	12-15 June	Ver 0.2
Environmental point clouds classification	Rennes, France	4/4

Day 4 14 June	09h15-12h00 B. Bookhagen A. Rheinwalt	Concepts of 2D convolutional neural networks Practical, using LiDAR data to prepare data for 2D convolutional network (trees) Google Colab or direct use of Python (depending on computing resources needed for the practical)
		Lunch
	13h30-14h00	Satisfaction survey, tour de table
		P. Leroy
	14h00-15h00	Loic Landrieux [IGN]
	Invited	Deep learning on point clouds
	15h00-16h00	Charles Gaydon [IGN]
	Invited	LiDAR HD french national LiDAR cover classification workflow
	16h00-17h00	Mathilde Letard [University of Rennes]
	Invited	Deep learning on waveforms
		<i>Picnic on the beach, departure from the campus at the end of the day! (Food included)</i>